An Isomorphism Between Monoids of External Embeddings: About Definability in Arithmetic
نویسنده
چکیده
We use a new version of the Definability Theorem of Beth in order to unify classical Theorems of Yuri Matiyasevich and Jan Denef in one structural statement. We give similar forms for other important definability results from Arithmetic and Number Theory. A.M.S. Classification: Primary 03B99; Secondary 11D99.
منابع مشابه
Naturality and Definability, I
Eilenberg and Mac Lane [1] explained the notion of a 'natural' embedding by giving a categorical definition. Starting from their examples, we argue that one could equally well explain natural as meaning 'uniformly definable in set theory'. But do the categorically natural embeddings coincide with the uniformly definable ones? This is partly a technical question about whether certain well-known ...
متن کاملA category equivalence for odd Sugihara monoids and its applications
An odd Sugihara monoid is a residuated distributive latticeordered commutative idempotent monoid with an order-reversing involution that fixes the monoid identity. The main theorem of this paper establishes a category equivalence between odd Sugihara monoids and relative Stone algebras. In combination with known results, it swiftly determines which varieties of odd Sugihara monoids are [strongl...
متن کاملTesting Graph Isomorphism in Parallel by Playing a Game
Our starting point is the observation that if graphs in a class C have low descriptive complexity, then the isomorphism problem for C is solvable by a fast parallel algorithm. More precisely, we prove that if every graph in C is definable in a finite-variable first order logic with counting quantifiers within logarithmic quantifier depth, then Graph Isomorphism for C is in TC1 ⊆ NC2. If no coun...
متن کاملDefinability in the enumeration degrees
We prove that every countable relation on the enumeration degrees, E, is uniformly definable from parameters in E. Consequently, the first order theory of E is recursively isomorphic to the second order theory of arithmetic. By an effective version of coding lemma, we show that the first order theory of the enumeration degrees of the Σ2 sets is not decidable.
متن کاملOn generalized fuzzy numbers
This paper first improves Chen and Hsieh’s definition of generalized fuzzy numbers, which makes it the generalization of definition of fuzzy numbers. Secondly, in terms of the generalized fuzzy numbers set, we introduce two different kinds of orders and arithmetic operations and metrics based on the λ-cutting sets or generalized λ-cutting sets, so that the generalized fuzzy numbers are integrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 67 شماره
صفحات -
تاریخ انتشار 2002